Effect of carbon dioxide inhalation on pulmonary hypertension induced by increased blood flow and hypoxia

I-Chun Chuan a,b, Rei-Cheng Yang b,d, Shah-Hwa Chou a,e, Li-Ru Huang b, Tsen-Ni Tsai b, Huei-Ping Dong f, Ming-Shyan Huang a,c,*

a Department of Respiratory Therapy, Kaohsiung Medical University, Kaohsiung, Taiwan
b Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
c Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
d Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
e Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
f Department of Physical Therapy, School of Medicine and Health Sciences, Fooyin University, Kaohsiung, Taiwan

Received 1 October 2010; accepted 10 November 2010
Available online 11 May 2011

KEYWORDS
Carbon dioxide; Increased pulmonary flow; Nitric oxide; Permissive hypercapnia; Pulmonary hypertension

Abstract There is now increasing evidence from the experimental and clinical setting that therapeutic hypercapnia from intentionally inspired carbon dioxide (CO₂) or lower tidal volume might be a beneficial adjunct to the strategies of mechanical ventilation in critical illness. Although previous reports indicate that CO₂ exerts a beneficial effect in the lungs, the pulmonary vascular response to hypercapnia under various conditions remains to be clarified. The purpose of the present study is to characterize the pulmonary vascular response to CO₂ under the different conditions of pulmonary hypertension secondary to increased pulmonary blood flow and secondary to hypoxic pulmonary vasoconstriction. Isolated rat lung (n = 32) was used to study (1) the vasoactive action of 5% CO₂ in either N₂ (hypoxic-hypercapnia) or air (normoxic-hypercapnia) at different pulmonary arterial pressure levels induced by graded speed of perfusion flow and (2) the role of nitric oxide (NO) in mediating the pulmonary vascular response to hypercapnia, hypoxia, and flow-associated pulmonary hypertension. The results indicated that inhaled CO₂ reversed pulmonary hypertension induced by hypoxia but not by flow alteration. Endogenous NO attenuates hypoxic pulmonary vasoconstriction but does not
Introduction

There have been contradictory reports indicating that carbon dioxide (CO₂) may constrict, dilate, or have no action on the pulmonary vessels. Respiratory alkalosis (hypocapnia) produced by mechanical hyperventilation is a therapeutic strategy for persistent pulmonary hypertension in infants. Previous studies have indicated that respiratory alkalosis improves oxygenation and decreases the mean pulmonary arterial pressure (PAP) when the arterial pH is greater than 7.55 and the PaCO₂ is less than 22 mmHg [1]. On the other hand, permissive hypercapnia with a small tidal volume has been adapted to avoid ventilator-induced lung injury in patients with lung injury or acute respiratory distress syndrome. Such "protective" ventilator strategies minimize lung stretch and patient mortality and often lead to an elevation in PaCO₂ [2–4].

There is evidence that high CO₂ tension with elevated hydrogen ion concentration (low pH) in the blood increases the extracellular Ca²⁺ influx and accounts for the vasoconstrictor property of CO₂ in pulmonary circulation [5,6]. Nonetheless, CO₂ also plays a vasodilator role under the condition of high vascular tone induced by drugs or hypoxia, and such a vasodilatatory effect is related to the concentration of inhaled CO₂, not to the blood pH value [7–11]. More recently, the potential beneficial effects of therapeutic hypercapnia as a result of direct improvements in gas exchange, anti-inflammatory events, and attenuation of ischemia-reperfusion, endotoxin, and ventilator-induced lung injuries have been reported in several studies [12–19].

Most previous studies indicate that the vasoactive action of CO₂ is dependent on the initial PAP; during basal tone condition, CO₂ is a mild vasoconstrictor, whereas at high pulmonary vascular resistance, it is a potent vasodilator [5,7–11,14,18]. The differences in pulmonary vascular tone may account for the discrepant vasoactive action of CO₂.

Our previous data represented the first demonstration of a pressure-response relationship between the degree of CO₂-induced vasodilatation and the level of PAP. We observed that the vasodilatory effect of CO₂ tends to be more evident at high PAP. In clinical settings, pulmonary arterial hypertension occurs under different clinical conditions depending on the associated disease. In our study, we also found that CO₂ is not a specific eliminator to hypoxia and endothelin-1 (ET-1)–induced pulmonary hypertension [20]. Because pulmonary hypertension secondary to increased pulmonary blood flow and pulmonary vasoconstriction often coexists with altered vascular reactivity, there has been considerable interest in the discrepant vasoactive action of inhaled CO₂ under the different conditions of pulmonary hypertension.

It is known that endothelial cells release vasoactive substances in modulating pulmonary vascular tone. Nitric oxide (NO) and ET-1 have been shown to be the major endothelium-dependent vasomediators [21–23]. The response of the pulmonary endothelium to increased flow and hypoxia may play an important role in the modulation of pulmonary vessel response to increasing pressure. There is evidence that NO plays an important role in the modulation of endothelial stress induced by increased pulmonary blood flow and hypoxic pulmonary vasoconstriction [24–27].

In the present study, we attempted to characterize the effect of inhaled CO₂ on pulmonary vascular response under different conditions of pulmonary hypertension induced by increased pulmonary blood flow and hypoxic pulmonary vasoconstriction. We also attempted to clarify the role of NO in mediating the pulmonary vascular response to hypercapnia, hypoxia, and increased pulmonary blood flow. Therefore, the pulmonary vascular responses to CO₂ inhalation were observed in isolated rat lungs under different levels of PAP induced by graded perfusion flow speed. The effects of inhaled CO₂ on pulmonary hypertension were evaluated by comparing vascular tone at normoxic-hypercapnia (5% CO₂ in air) and vascular tone at hypoxic-hypercapnia (5% CO₂ in N₂) ventilation. Furthermore, to clarify the modulatory role of NO, we investigated the effect of NO and ET₂ (endothelin type B receptor) blockade on hypercapnia, hypoxia, and increased blood flow induced changes in pulmonary vascular tone.

Materials and methods

Animals

Adult male Sprague-Dawley rats weighing 300–350 g were used. The specific pathogen-free animals were purchased from the National Animal Center and housed in a temperature-controlled animal room. The room temperature was maintained at 22 ± 1°C under a 12/12-hour light/dark regimen. Food and water were available ad libitum. The use and care of the animals were approved by the Animal Care and Use Committee of Kaohsiung Medical University.

Isolation and perfusion of rat lungs

The rats were deeply anesthetized with an intraperitoneal injection of pentobarbital sodium (50 mg/kg). The experimental setup was modified from previous studies [28]. After tracheotomy, the lungs were artificially ventilated with room air. Heparin (1 U/g) was administered into the left ventricle after a midsternal thoracotomy. A total of 10 mL of blood was collected from the right ventricle and mixed with 10 mL of Hank’s balanced salt solution (in mM: NaCl 136.9, KCl 5.4, glucose 5.6, KH₂PO₄ 0.4, Na₂HPO₄ 0.3, and 6% albumin and pH was adjusted to 7.35–7.40) and subsequently used to perfuse the isolated lungs. Furthermore, the perfusion medium was gassed with a mixture of 5% CO₂ and monitored continuously for pH. During the initial stabilization period, the pH was adjusted to 7.4 ± 0.05 with HCl. A cannula was placed in the pulmonary artery through the CO₂-induced vasodilatation. Acute change in blood flow does not alter the endogenous NO production.

Copyright © 2011, Elsevier Taiwan LLC. All rights reserved.
a puncture into the right ventricle, and a tight ligature was placed around the main trunk of the pulmonary artery. A large catheter was inserted into the left atrium through the left ventricle and mitral valve and fixed by ligature at the apex of the heart to divert pulmonary venous outflow into a reservoir. A third ligature was placed above the arterioventricular junction to prevent perfusate flow into the ventricles. Perfusion fluid maintained at 37 ± 0.5°C was circulated by use of a roller pump at a flow rate of 10 mL/min. The PAP and pulmonary venous pressure were measured with pressure transducers (Gould Instruments, Cleveland, OH, USA) from a side arm of the inflow and outflow cannula. The pulmonary venous pressure was set at 2 mmHg by adjusting the height of the venous reservoir.

After an initial hyperinflation to reverse atelectasis, the lungs were ventilated at 60 breaths/min and tidal volume at 2.5 mL. The end-expiratory pressure was set at 2 cmH2O. The gas tension in the perfusate was measured at the beginning of each experiment and after changes in ventilatory gas mixtures, by collecting perfusion fluid anaerobically and analyzing immediately using a gas analyzer (Stat Profile 5; Nova Biomedical, MA, USA). There were three criteria for a satisfactory isolated lung preparation: no leakage at the site of cannula insertion, no evidence of hematoma or edema, and an isogravimetric state.

Drug preparation and delivery

N-Nitro-L-arginine methyl ester (L-NAME, NO synthase blocker) and BQ788 (ETβ receptor blocker) were purchased from Sigma (Sigma Chemical, St. Louis, MO, USA) and were added to the venous reservoir to give a final concentration of 400 mM and 1 μM in the perfusate.

Experimental outline

Experiments in isolated perfused lungs were carried out in two series; and different perfusion rates (13, 18, 25 mL/min) were used to induce various levels of PAP elevation. In Experiment Series A, we examined the effect of CO2 on the flow-associated PAP elevation under normoxic-hypercapnia ventilation both with (Group A1) and without (Group A2) endogenous NO. To assess the role of NO in mediating the pulmonary vascular response to flow challenge and hypercapnia, Group A2 was pretreated with L-NAME 15 minutes before the flow challenge. Following each challenge of flow alteration, the pH, gas tension in the perfusate, and PAP were obtained after steady PAP values were observed over a period of at least 10 minutes. Thereafter the inspired gas was switched to the following mixture: (1) Groups A1 and A2: normoxic-hypercapnia gas with 5% CO2 in air and (2) Groups B1 and B2: hypoxic-hypercapnia gas with 5% CO2 in N2. After 10 minutes of experimental gas inhalation, the changes of PAP, pH, and the gas tension in the perfusate were recorded. The inspired gas was then switched back to room air for 10 minutes before the next challenge of flow alteration and gas inhalation.

Statistical analysis

Values are expressed as means ± standard deviation or means ± standard error of the mean as appropriate. Statistical evaluation of the differences among and within groups was performed using the paired Student t test. The p values less than 0.05 were considered to be statistically significant.

Results

CO2 on the flow-associated PAP elevation under normoxic-hypercapnia ventilation with and without endogenous NO

In Experiment Series A, ventilation with normoxic-hypercapnia gas produced a significant increase in PaCO2 (p < 0.01) and a decrease in pH (p < 0.01) (Table 1). Three challenges (10–13 mL/min, 18 mL/min, and 25 mL/min) of increased perfusion flow elevated the PAP by 4.0 ± 1.0 mmHg, 6.5 ± 1.3 mmHg, and 7.6 ± 1.2 mmHg by a significant amount (p < 0.01) (Table 1, Fig. 1A). Neither inhalation of normoxic-hypercapnia nor normal room air breathing had a significant influence on the PAP (Fig. 1A and B).

In Group A2, there was no significant change on basal PAP with L-NAME and BQ788 pretreatment. In this group, we observed that the flow-associated PAP elevation was not affected under endogenous NO inhibition (p > 0.05, compared with Group A1) (Fig. 3). The increases in PAP were 4.4 ± 1.1 mmHg, 7.1 ± 0.9 mmHg, and 8.0 ± 0.5 mmHg by three sequential flow alterations (p < 0.01) (Table 1, Fig. 1A). Neither normoxic-hypercapnia gas inhalation nor room air breathing changed the PAP significantly (Fig. 1A and C).

CO2 on the flow-associated PAP elevation under hypoxic-hypercapnia ventilation with and without endogenous NO

In Experiment Series B, ventilation with hypoxic-hypercapnia gas produced a significant increase in PaCO2
<table>
<thead>
<tr>
<th>Treatment:</th>
<th>Baseline (10 lpm)</th>
<th>13 lpm</th>
<th>Gas inhalation</th>
<th>Room air</th>
<th>18 lpm</th>
<th>Gas inhalation</th>
<th>Room air</th>
<th>25 lpm</th>
<th>Gas inhalation</th>
<th>Room air</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A1</td>
<td></td>
</tr>
<tr>
<td>PAP</td>
<td>14.4 ± 0.9</td>
<td>18.4 ± 0.9</td>
<td>18.2 ± 0.8</td>
<td>18.2 ± 0.7</td>
<td>24.7 ± 1.4</td>
<td>24.6 ± 1.2</td>
<td>24.8 ± 1.1</td>
<td>32.4 ± 2.1</td>
<td>31.6 ± 2.0</td>
<td>32.0 ± 2.1</td>
</tr>
<tr>
<td>PCO₂</td>
<td>34.6 ± 1.4</td>
<td>65.2 ± 5.2a</td>
<td>36.4 ± 2.4</td>
<td>68.8 ± 6.6a</td>
<td>37.5 ± 2.8</td>
<td>64.7 ± 6.1a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>7.34 ± 0.08</td>
<td>7.20 ± 0.10a</td>
<td>7.35 ± 0.06</td>
<td>7.14 ± 0.09a</td>
<td>7.39 ± 0.08</td>
<td>7.13 ± 0.11a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group A2</td>
<td></td>
</tr>
<tr>
<td>PAP</td>
<td>14.7 ± 1.3</td>
<td>19.0 ± 1.2</td>
<td>19.1 ± 1.4</td>
<td>19.1 ± 1.0</td>
<td>26.2 ± 1.3</td>
<td>26.0 ± 1.4</td>
<td>25.8 ± 1.3</td>
<td>33.8 ± 1.5</td>
<td>33.3 ± 1.7</td>
<td>33.3 ± 1.6</td>
</tr>
<tr>
<td>PCO₂</td>
<td>38.9 ± 0.6</td>
<td>72.8 ± 6.4a</td>
<td>39.9 ± 0.8</td>
<td>68.7 ± 5.9a</td>
<td>42.1 ± 1.8</td>
<td>72.2 ± 6.6a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>7.39 ± 0.06</td>
<td>7.08 ± 0.12a</td>
<td>7.34 ± 0.9</td>
<td>7.19 ± 0.10a</td>
<td>7.43 ± 0.16</td>
<td>7.05 ± 0.15a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group B1</td>
<td></td>
</tr>
<tr>
<td>PAP</td>
<td>15.0 ± 1.0</td>
<td>19.1 ± 1.2</td>
<td>21.1 ± 1.3</td>
<td>20.2 ± 1.2</td>
<td>25.6 ± 1.3</td>
<td>28.7 ± 1.5</td>
<td>27.0 ± 1.2</td>
<td>34.1 ± 1.2</td>
<td>38.2 ± 1.9</td>
<td>35.4 ± 1.8</td>
</tr>
<tr>
<td>PCO₂</td>
<td>34.6 ± 0.8</td>
<td>68.2 ± 4.9a</td>
<td>39.2 ± 1.3</td>
<td>65.6 ± 5.9a</td>
<td>41.2 ± 1.7</td>
<td>64.2 ± 5.3a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>7.34 ± 0.04</td>
<td>7.18 ± 0.09a</td>
<td>7.38 ± 0.05</td>
<td>7.15 ± 0.09a</td>
<td>7.38 ± 0.08</td>
<td>7.14 ± 0.14a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group B2</td>
<td></td>
</tr>
<tr>
<td>PAP</td>
<td>14.6 ± 1.4</td>
<td>18.7 ± 1.4</td>
<td>21.9 ± 1.7</td>
<td>20.7 ± 1.5</td>
<td>26.9 ± 0.9</td>
<td>32.8 ± 1.3</td>
<td>28.9 ± 1.1</td>
<td>36.8 ± 2.1</td>
<td>45.2 ± 1.78</td>
<td>38.5 ± 2.2</td>
</tr>
<tr>
<td>PCO₂</td>
<td>39.2 ± 0.7</td>
<td>67.8 ± 6.6a</td>
<td>36.2 ± 0.9</td>
<td>63.2 ± 5.9a</td>
<td>34.5 ± 0.4</td>
<td>63.2 ± 6.4a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>7.40 ± 0.08</td>
<td>7.11 ± 0.13a</td>
<td>7.35 ± 0.09</td>
<td>7.17 ± 0.11a</td>
<td>7.33 ± 0.07</td>
<td>7.09 ± 0.14a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Less than 0.01 compared with corresponding values before gas inhalation.

Gas inhalation: Group A1 = 5% CO₂ in air; Group A2 = 5% CO₂ in air, pretreated with L-NAME + BQ788; Group B1 = 5% CO₂ in N₂; Group B2 = 5% CO₂ in N₂, pretreated with L-NAME + BQ788; PAP = pulmonary arterial pressure (mmHg).
minutes of gas inhalation, PAP had decreased by 2.4 ± 0.5 mmHg, 3.6 ± 0.6 mmHg, and 5.2 ± 0.9 mmHg (p < 0.01) (Table 1, Fig. 2A and B). The PAP rebounded by 1.5 ± 0.3 mmHg, 2.0 ± 0.3 mmHg, and 2.4 ± 0.4 mmHg, respectively, when the inhaled gas was changed to room air (Fig. 2A). In Group B1, inhibition of NO synthesis with L-NAME and BQ788 also evoked a biphasic response with a transient hypoxic vasoconstriction. In this group, the PAP was elevated by 4.1 ± 0.7 mmHg, 5.4 ± 0.9 mmHg, and 8.0 ± 2.0 mmHg during three challenges of flow alteration (p < 0.01) (Table 1, Fig. 2A). In response to hypoxic-hypercapnia gas (5% CO$_2$ in air), PAP was initially increased by 3.3 ± 0.6 mmHg, 5.9 ± 0.9 mmHg, and 8.3 ± 1.7 mmHg (p < 0.01). At 4–6 minutes of gas inhalation, PAP began to gradually drop; at 10 minutes of gas inhalation, PAP had decreased by 3.4 ± 0.8 mmHg, 5.9 ± 1.0 mmHg, and 9.4 ± 1.6 mmHg (p < 0.01) (Table 1, Fig. 2A and C). Again, room air inhalation reversed the PAP by 2.2 ± 0.7 mmHg, 2.0 ± 0.5 mmHg, and 2.7 ± 0.4 mmHg (Fig. 2A). In this series of experiments, pretreatment with L-NAME and BQ788 eliminated the endogenous NO, while greatly potentiating the pulmonary vasoconstriction response to hypoxia, but did not eliminate the vasodilatory effect of CO$_2$ (Fig. 2C).

Discussion

In the present study, we demonstrated that CO$_2$ provides a compensatory mechanism to reverse the PAP when vascular tone is raised by hypoxia, but not by alternation of perfusion flow (Figs. 1A and 2A). Pretreatment with L-NAME and BQ788 significantly potentiates hypoxic pulmonary vasoconstriction (Fig. 2A). However, the pulmonary vasodilatory effects of CO$_2$ are essentially not affected by L-NAME or BQ788 (Fig. 2D), suggesting that NO is not involved in the hypercapnic vasodilatation.

There is strong evidence that pulmonary vessels constrict during hypoxia, hypercapnia, and acidemia. High CO$_2$ tension with elevated hydrogen ion concentration in the blood increases the extracellular Ca$^{2+}$ influx, which is thought to be the main cause of vasoconstriction in the pulmonary circulation. The early works of Duke et al. [29] and Shaw and Barer [8] showed that CO$_2$ usually causes weak vasoconstriction under normal vascular tone. Addition of acid also causes vasoconstriction, whereas alkali administration causes vasodilation. However, CO$_2$ also plays a vasodilator role under the condition of high vascular tone. Subsequent studies have reported that respiratory acidosis tends to attenuate the suppressor response to hypoxia and vasoconstrictors, whereas respiratory alkalosis exerts the opposite effect [9,10]. These findings suggest that an increase in hydrogen ion concentration alone causes pulmonary vasoconstriction and that an increase in CO$_2$ tension in the blood could attenuate the vasomotor response to hypoxia or vasoconstrictors in spite of the hydrogen ion concentration. These findings are consistent with those of Viles and Shepherd [7], who showed CO$_2$ acted as a pulmonary vasodilator, independent of hydrogen ion concentration. In this connection, our previous study also confirmed that the vasodilatory effect of CO$_2$ is pH independent. In the experiment, under ET-1–induced
pulmonary hypertension, we infused acetic acid to alter the pH value close to the value produced by 5% CO₂ inhalation. The infused acetic acid slightly elevated the PAP while decreasing the pH [20].

The action of CO₂ on vascular tone was described to be a local action because it was present after autonomic blockade in isolated perfused lungs and was not eliminated in intact animals by vagotomy or atropine [11]. There has been considerable interest in the role of NO in mediating hypercapnic vasodilatation. In the present study, blocking endogenous NO with L-NAME and BQ788 did not eliminate the vasodilatory response to hypercapnia, but enhanced hypoxic pulmonary vasoconstriction. NO seems to specifically modulate hypoxic pulmonary vasoconstriction while not being involved in CO₂-induced vasodilatation. Several studies have pointed out that an increase in NO production during acute or chronic hypoxia tends to blunt the vasoconstrictory effect induced by hypoxia [11,30—33]. In the present data, in Group B1 we observed a biphasic response of transient hypoxic vasoconstriction followed by CO₂-induced vasodilatation in response to hypercapnic-hypercapnia (Fig. 2A and B). In Group B2, inhibition of endogenous NO tended to potentiate the pulmonary vasoconstriction response to hypoxia, but did not eliminate the vasodilatory effect of CO₂. In both the B1 and B2 groups, this latter pulmonary vasodilatation could be aborted with pure N₂ inhalation (data not shown). These findings suggest that acute hypoxia causes pulmonary vasoconstriction, but coexistent hypercapnia inhibits this effect. Comparing the percentages of CO₂-induced vasodilatation in both groups, the vasodilatory effect of CO₂ was not affected by inhibition of endogenous NO (Fig. 2D). This suggests that NO is significantly involved in hypoxic vasoconstriction, whereas not contributing to hypercapnic ventilation in the face of hypoxic pulmonary hypertension. In contrast to our finding, Yamaguchi et al. [34] documented that hypercapnic acidosis elevated vascular tone and perfusate nitrite/nitrate in an isolated lung model. Other studies have also reported that hypercapnia acidosis is associated with the upregulation of nitric oxide synthase-mediated NO dependent effects at the vascular and molecular levels [35,36]. Although our results differ from previous studies, it appears that acidification may stimulate unidentified mechanisms in the pretranscriptional phase of endothelial nitric oxide synthase [37,38].

Study evidence suggests that normal pulmonary vascular tone is regulated by vasoactive substances that are produced locally by the vascular endothelium. The phenomenon of enhanced basal NO production also occurs in certain types of pulmonary hypertension that is an

Figure 2. (A) Graph representing means ± standard error, PAP at baseline, and during the course of the experiment in Series B. PAP increased significantly in response to speed alternation (a, b, p < 0.01 compared with base). In both groups, hypoxic-hypercapnia gas challenge (5% CO₂ in N₂) evoked a biphasic response with a transient hypoxic vasoconstriction [first phase, Gas(1)] followed by a CO₂ vasodilatation [second phase, Gas(2)]. (B) and (C) PAP changes in response to hypoxic-hypercapnia gas (5% CO₂ in N₂) following with flow challenges at various speeds for Groups B1 and B2. (Values are means ± standard deviation. a, b, p < 0.05; c, p < 0.01 hypoxic vasoconstriction compared with previous course of gas challenge. d, p < 0.01 CO₂ vasodilatation vs. previous course of gas challenge). (D) Values are means ± standard deviation. Percent relaxation in response to CO₂ showed no significant difference between Groups B1 and B2. The vasodilatation effect of CO₂ was not affected by L-NAME and BQ788. CO₂ = carbon dioxide; L-NAME = N-nitro-L-arginine methyl ester; PAP = pulmonary arterial pressure; RA = room air.
important modulator of pulmonary vascular reactivity [24,26]. However, the response of the pulmonary vasculature to increase in blood flow appears to be very contradictory. Some reports indicate that increased blood flow produces endothelial dysfunction with loss of endothelial dependent vasodilation [27–39]. In the present study, we did not observe the phenomenon of flow-associated NO enhancement in comparing the flow-induced PAP elevation among the groups with and without inhibition of endogenous NO (Fig. 3). Furthermore, from the observation in the study of Series B, the hypoxic vasoconstriction response was potentiated with inhibition of endogenous NO. If NO formation was deprived in flow-induced pulmonary hypertension, endogenous NO inhibition should not cause a higher magnitude of pressure rise in response to hypoxia stimulation.

As mentioned in the literature review, there is no significant difference in pulmonary vascular resistance in response to graded CO2 or varying concentrations of CO2 [8,9,34,40]. In the present study, we simply used a concentration of 5% CO2, which produced a degree of hypercapnia acidosis similar to that commonly observed when using protective ventilatory strategies in clinical illness. Reports to date of the vasoactive action of CO2 have concentrated on its vasodilatory and beneficial effects. Although we know that discrepant vasoactive action of CO2 may arise from differences in pulmonary vascular tone, the concept of a pressure-response relationship between the degree of CO2-induced vasodilatation and the level of PAP still needs to be elucidated. Therefore, our study was in large part designed to identify whether the vasodilator effect of CO2 on the pulmonary circulation is dependent on the level of PAP and to assess the effect of CO2 on pulmonary vascular tone under various conditions. In clinical situations, hypercapnia, hypoxia, and increased blood flow usually coexist in pulmonary hypertension. There has been considerable interest in the effect of CO2 on hypoxic and flow alteration–induced pulmonary hypertension. However, in the present study, we observed that CO2 reversed the PAP only when induced by hypoxia stimulation, but not when induced by alteration of perfusion flow. Pulmonary hypertension secondary to increased pulmonary blood flow and hypoxic pulmonary vasoconstriction often coexists with altered vascular reactivity. The discrepant results may arise from the specific vasodilatory action of CO2. The vasoactive action of CO2 did not affect the flow-associated pulmonary hypertension because the pulmonary vessels act as a distensible tube that enlarges with increasing flow, leading to increased PAP.

The major findings of the present study are encouraging in that elevated CO2 tension in arterial blood might have a protective effect and this could have important implications for the clinical management of mechanical ventilation in intensive care settings. In conclusion, there are several aspects of our present study that provide evidence that (1) inhaled CO2 reversed pulmonary hypertension induced by hypoxia but not by flow alteration; (2) the vasodilatory effects of CO2 at different pressure levels vary in accordance with the levels of PAP—the dilatory effect tends to be more evident at higher PAP; and (3) endogenous NO attenuates hypoxic pulmonary vasoconstriction but does not augment the CO2-induced vasodilatation.

Acknowledgments

We thank John A. Horrocks and Stuart Neff, MSTCM, for English writing assistance. This study was supported by a grant from Kaohsiung Medical University Research Foundation (KMU-M 098013).

References

Effect of inhaled CO2 on pulmonary hypertension

